
initialise()
{
 N ← 0
 mylist ← []
}

figure 1

store(file)
{
 N ← N + 1
 resize(mylist, N)
 mylist[N] ← file
}

figure 2

study(file)
{
 for i ← 1 upto N
 {
 if mylist[i] ≡ file

 return STORED
 }
 return NEVER STORED
}

figure 3

2010 SEEKING RECOGNITION

I’ve seen this before …

In this question we will be building a system to recognize files. The system
will have simple functionality: we need to be able to store a file, and given a file
which we may or may not have seen before, we need to be able to study a file.
This operation should return STORED if that file has been stored at some point in
the past, or NEVER STORED otherwise.

Our system will never need to ‘un-store’ a file which has already been stored.

We never need to recognize files which are merely similar to a file we have
seen before ― only files which are exactly the same, bit for bit. We can think of a
file as being a long string of 0s and 1s, and hence as a (very) large binary number.
We will imagine that our computer language can manipulate numbers this large
as easily as any other kind of number.

One simple way of storing the files is to keep a simple list. Figures 1 - 3 give
pseudocode for this approach.

Figure 1 shows pseudocode for initialise, which is run before we use our system
for the first time (← is how we assign values, and [] indicates an empty list). Our
system will use N to keep track of the number of files that have been seen and
keep the list of files in mylist. Figure 2 shows the store function, which first resizes
the list to make space for one more element before adding it to the list. Finally
figure 3 shows the study function, which loops through the list until it either finds
file or runs out of list.

It might be better to keep the list mylist in sorted order; so that the element
stored in location mylist[1] is always smaller (when considered as a number) than
the element in mylist[2], and so on.

Question 1
Modify the pseudocode of the store routine to keep the list sorted. You should

assume mylist already contains a sorted list of files and that we are just trying to
insert a single new file. Is the new store function faster or slower than the old one?

The study operation can now be made faster. Suppose we are studying file.
We examine the element in the middle of the list (if there is no element exactly in
the middle, we choose one as close to the middle as possible). Let's say this
element is mylist[k]. If this matches file, we can report that the file had been
STORED. If not, then either file < mylist[k] or file > mylist[k].

Question 2
Suppose that in fact file < mylist[k]. Why, if file is stored at all, must it be

somewhere amongst mylist[1] … mylist[k-1]? Briefly justify your answer and
indicate what can be concluded if file > mylist[k].

British Informatics Olympiad Final
Sponsored by Lionhead Studios

initialise()
{
 mylist ← []
 resize(mylist, M)
 for i ← 1 upto M
 mylist[i] ← 0
}

figure 4

store(file)
{
 r ← random-oracle(file, M)
 mylist[r] ← 1
}

figure 5

If we know that file can only lie amongst mylist[1] … mylist[k-1], we then
examine the element in the middle of the range mylist[1] … mylist[k-1]. It might
be file, in which case we can report that the file had been STORED. Otherwise,
we can narrow down further our knowledge of where in the list file must be, if it is
stored at all.

Question 3
Using these ideas, briefly explain how we can continue this approach to

eventually either find file or show that it was NEVER STORED.

Question 4
Suppose that the list contains files represented by the following numbers:

1,5,10,13,17,20,22. (We have used unrealistically small numbers for
convenience.) Which elements in the list would need to be examined if we were
trying to see if the file 7 had been stored?

Question 5
Suppose that there are 127 files stored in the list, and that we are studying a

file which, in fact, has not been stored. What is the largest number of elements in
the list we might have to examine? What is the smallest? What if there were 128
files stored in the list?

One disadvantage of this approach is that, if the files which are stored are very
large, it requires a great deal of memory, since we must remember a copy of every
file we store in our list. In fact, any approach which has a 100% accuracy rate in
determining whether a given file has been STORED or not must take up a great
deal of memory.

Question 6
Imagine that we know that 10 files have been stored, but we do not know

what they are. Explain how, just by calling the study function with certain inputs,
we can (in principle) reconstruct what those 10 files were. (Note that your
approach need not be practical.)

Bloom Filters

If we are willing to accept a small chance that we will report that we have
STORED something which in fact we have not, then we can use much less space.
We will imagine that we have a function called random-oracle, which inputs a file
and a number M. For each possible file, the output of random-oracle will be a
random number between 1 and M, but the output is always consistent: whenever
we use the same input (file and M) we will always get the same output. The
outputs of random-oracle for different files are completely independent of one
another.

Under this approach, we choose a number M about 100 times bigger than the
number of files we plan to ever store. As an example, we will imagine that we
plan to store about 10000 items, and we take M to be one million.

Figures 4 and 5 give pseudocode for the store and initialise functions. The
initialise function create a list of M elements all of which are set to 0. The store
function no longer stores the entire file, but uses the random-oracle to modify the list.

Notice that the list only ever stores 1s and 0s, so each entry in the list need
only occupy one bit of computer memory.

British Informatics Olympiad Final
Sponsored by Lionhead Studios

store(file)
{
 r ← random-oracle(file, M)
 for i ← 1 upto 70
 mylist[r[i]] ← 1
}

 figure 5

Question 7
Write a study routine for this system. Remember, it is acceptable for your

routine to have a small chance of reporting that something has been stored when
it in fact has not. On the other hand, if something has been stored, you should
always correctly say so.

Question 8
It is possible to show that, after storing 10000 files, we would expect to have

about 9950 1s stored in the list. If we did have this number of 1s, what is the
chance that, if we were asked to study a file which had never been stored, we
would mistakenly report that it had been?

Question 9
For our system with M taken to be 1000000, roughly how much memory will

our system take up? (You need only account for the data, not the storage space
required for the code.)

It is possible to dramatically decrease the chance of inaccurately reporting that
a file has been stored without using any more memory. To do this, we imagine
that random-oracle has been modified so that it no longer returns 1 random
number from 1 to M, but an array of 70 random numbers, each one independent
of the others. As before, this is done consistently ― you always get the same 70
numbers when you give it the same input.

The initialise function is unchanged, and the new store function is shown in
figure!5. Note that we update mylist using each of the numbers returned by
random-oracle.

Question 10
Write pseudocode for a study routine to match this store routine. Remember, it is

acceptable for your routine to occasionally report that something has been stored
when it in fact has not, but you should try to minimize the chance of this happening.
As before, if something has been stored, you should always correctly say so.

It is possible to show that, after storing 10000 files, we would expect to have about
half of the memory spots filled with 1s (actually 503415 of them but who's counting?).

Question 11
If we did have exactly half the memory filled with 1s what would be the

chance of reporting the file STORED when in fact it had not been? You should
express your answer roughly in the form 1 in 2k for some whole number k, as well
as expressing it in the form 1 in 10r for some whole number r.

Finally, let's suppose that Romulus and Remus have both been using the
scheme above to store and study (possibly different) files. They both use the same
random-oracle function. They each have lists (romulusList and remusList), which
have 1s and 0s in them according to the scheme above.

Question 12
They wish to join forces, and make a single list, mylist, such that if one uses the

study function with this new list, one will be told that something has been
STORED if either Romulus or Remus had seen it before. Give an algorithm to
compute the list mylist given romulusList and remusList, and explain why it works.

How about if something should only be reported as STORED if both Romulus
and Remus had seen it before?

British Informatics Olympiad Final
Sponsored by Lionhead Studios

